|
A radioisotope thermoelectric generator (RTG, RITEG) is an electrical generator that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. An RTG has no moving parts. RTGs have been used as power sources in satellites, space probes, and unmanned remote facilities such as a series of lighthouses built by the former Soviet Union inside the Arctic Circle. RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts (or less) of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. Safe use of RTGs requires containment of the radioisotopes long after the productive life of the unit. == History == RTGs were developed in the US during the late 1950s by Mound Laboratories in Miamisburg, Ohio under contract with the United States Atomic Energy Commission. The project was led by Dr. Bertram C. Blanke. The first RTG launched into space by the United States was SNAP 3 in 1961, aboard the Navy Transit 4A spacecraft. One of the first terrestrial uses of RTGs was in 1966 by the US Navy at uninhabited Fairway Rock in Alaska. RTGs were used at that site until 1995. A common RTG application is spacecraft power supply. Systems for Nuclear Auxiliary Power (SNAP) units were used for probes that traveled far from the Sun rendering solar panels impractical. As such, they were used with Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, New Horizons and the Mars Science Laboratory. RTGs were used to power the two Viking landers and for the scientific experiments left on the Moon by the crews of Apollo 12 through 17 (SNAP 27s). Because the Apollo 13 moon landing was aborted, its RTG rests in the South Pacific ocean, in the vicinity of the Tonga Trench. RTGs were also used for the Nimbus, Transit and LES satellites. By comparison, only a few space vehicles have been launched using full-fledged nuclear reactors: the Soviet RORSAT series and the American SNAP-10A. In addition to spacecraft, the Soviet Union constructed many unmanned lighthouses and navigation beacons powered by RTGs. Powered by strontium-90 (90Sr), they are very reliable and provide a steady source of power. Critics argue that they could cause environmental and security problems as leakage or theft of the radioactive material could pass unnoticed for years, particularly as the locations of some of these lighthouses are no longer known due to poor record keeping. In one instance, the radioactive compartments were opened by a thief.〔 In another case, three woodsmen in Georgia came across two ceramic RTG heat sources that had been stripped of their shielding. Two of the three were later hospitalized with severe radiation burns after carrying the sources on their backs. The units were eventually recovered and isolated.〔(【引用サイトリンク】publisher=Malgorzata K. Sneve )〕 There are approximately 1,000 such RTGs in Russia. All of them have long exhausted their 10-year engineered life spans. They are likely no longer functional, and may be in need of dismantling. Some of them have become the prey of metal hunters, who strip the RTGs' metal casings, regardless of the risk of radioactive contamination. The United States Air Force uses RTGs to power remote sensing stations for ''Top-ROCC'' and ''SEEK IGLOO'' radar systems predominantly located in Alaska.〔(Alaska fire threatens air force nukes ), WISE〕 In the past, small "plutonium cells" (very small 238Pu-powered RTGs) were used in implanted heart pacemakers to ensure a very long "battery life".〔(Nuclear-Powered Cardiac Pacemakers ), LANL〕 , about 90 were still in use. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「radioisotope thermoelectric generator」の詳細全文を読む スポンサード リンク
|